Abstract
Energy and fuels derived from biomass pose lesser impact on the environmental carbon footprint than those derived from fossil fuels. In order for the biomass-to-energy and biomass-to-chemicals processes to play their important role in the loop of the circular economy, highly active, selective, and stable catalysts and the related efficient chemical processes are urgently needed. Lignin is the most thermal stable fraction of biomass and a particularly important resource for the production of chemicals and fuels. This mini review mainly focuses on lignin valorizations for renewable chemicals and fuels production and summarizes the recent interest in the lignin valorization over Ni and relevant bimetallic metal catalysts on various supports. Particular attention will be paid to those strategies to convert lignin to chemicals and fuels components, such as pyrolysis, hydrodeoxygenation, and hydrogenolysis. The review is written in a simple and elaborated way in order to draw chemists and engineers’ attention to Ni-based catalysts in lignin valorizations and guide them in designing innovative catalytic materials based on the lignin conversion reaction.
Funder
University Grants Committee
Subject
Physical and Theoretical Chemistry,Catalysis
Reference149 articles.
1. Circular economy and waste to energy;Rada;AIP Conf. Proc.,2018
2. Green Chemistry: Theory and Practice;Anastas,1998
3. Metal Prices Per Kilogram
https://www.dailymetalprice.com/
4. Life Cycle Assessment of Metals: A Scientific Synthesis
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献