Determination of Kinetic and Thermodynamic Parameters of Biomass Gasification with TG-FTIR and Regression Model Fitting

Author:

Zsinka Viktória1,Tarcsay Bálint Levente2,Miskolczi Norbert1ORCID

Affiliation:

1. MOL Department of Hydrocarbon and Coal Processing, Research Centre of Biochemical, Environmental and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary

2. Department of Process Engineering, Research Centre of Biochemical, Environmental and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary

Abstract

In this study, the decomposition of five different raw materials (maize, wheat and piney biomass, industrial wood chips and sunflower husk) were investigated using the TG-FTIR method to obtain raw data for model-based calculations. The data obtained from the thermogravimetric analysis served as a basis for kinetic analysis with three different isoconversional, model-free methods, which were the KAS, FWO and Friedman methods. Afterwards, the activation energy and the pre-exponential factor were determined, and no significant difference could be identified among the used methods (difference was under 5%), achieving 203–270 kJ/mol of Ea on average. Thereafter, the thermodynamic parameters were studied. Based on the TG-FTIR data, a logistic regression model was fitted to the data, which gives information about the thermal degradation and the obtained components with different heating rates. The FTIR analysis resulted in differential peaks corresponding to the studied components that were detected within the temperature range of 350–380 °C. The primary degradation processes occurred within a broader temperature range of 200–600 °C. Accordingly, in this work, the use of logistic mixture models as an alternative to traditional kinetic models for the description of the TGA process was also investigated, reaching adequate performance in fitting by a validation data coefficient of determination of R2 = 0.9988.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3