Enhanced Virtual Inertia Control for Microgrids with High-Penetration Renewables Based on Whale Optimization

Author:

Faragalla Asmaa,Abdel-Rahim OmarORCID,Orabi MohamedORCID,Abdelhameed Esam H.ORCID

Abstract

High penetration of renewable energy sources into isolated microgrids (µGs) is considered a critical challenge, as µGs’ operation at low inertia results in frequency stability problems. To solve this challenge, virtual inertia control based on an energy storage system is applied to enhance the inertia and damping properties of the µG. On the other hand, utilization of a phase-locked loop (PLL) is indispensable for measuring system frequency; however, its dynamics, such as measurement delay and noise generation, cause extra deterioration of frequency stability. In this paper, to improve µG frequency stability and minimize the impact of PLL dynamics, a new optimal frequency control technique is proposed. A whale optimization algorithm is used to enhance the virtual inertia control loop by optimizing the parameters of the virtual inertia controller with consideration of PLL dynamics and the uncertainties of system inertia. The proposed controller has been validated through comparisons with an optimized virtual inertia PI controller which is tuned utilizing MATLAB internal model control methodology and with H∞-based virtual inertia control. The results show the effectiveness of the proposed controller against different operating conditions and system disturbances and uncertainties.

Funder

Aswan University Fund for Sustainable Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3