Adaptive Control for Virtual Synchronous Generator Parameters Based on Soft Actor Critic

Author:

Lu Chuang1,Zhuan Xiangtao1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Abstract

This paper introduces a model-free optimization method based on reinforcement learning (RL) aimed at resolving the issues of active power and frequency oscillations present in a traditional virtual synchronous generator (VSG). The RL agent utilizes the active power and frequency response of the VSG as state information inputs and generates actions to adjust the virtual inertia and damping coefficients for an optimal response. Distinctively, this study incorporates a setting-time term into the reward function design, alongside power and frequency deviations, to avoid prolonged system transients due to over-optimization. The soft actor critic (SAC) algorithm is utilized to determine the optimal strategy. SAC, being model-free with fast convergence, avoids policy overestimation bias, thus achieving superior convergence results. Finally, the proposed method is validated through MATLAB/Simulink simulation. Compared to other approaches, this method more effectively suppresses oscillations in active power and frequency and significantly reduces the setting time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3