Author:
Sun Jiaxuan,Gu Lize,Chen Kaiyuan
Abstract
With the emergence of network security issues, various security devices that generate a large number of logs and alerts are widely used. This paper proposes an alert aggregation scheme that is based on conditional rough entropy and knowledge granularity to solve the problem of repetitive and redundant alert information in network security devices. Firstly, we use conditional rough entropy and knowledge granularity to determine the attribute weights. This method can determine the different important attributes and their weights for different types of attacks. We can calculate the similarity value of two alerts by weighting based on the results of attribute weighting. Subsequently, the sliding time window method is used to aggregate the alerts whose similarity value is larger than a threshold, which is set to reduce the redundant alerts. Finally, the proposed scheme is applied to the CIC-IDS 2018 dataset and the DARPA 98 dataset. The experimental results show that this method can effectively reduce the redundant alerts and improve the efficiency of data processing, thus providing accurate and concise data for the next stage of alert fusion and analysis.
Subject
General Physics and Astronomy
Reference51 articles.
1. Anomaly detection
2. Host-Based Intrusion Detection System with System Calls
3. Research in Intrusion-Detection Systems: A Survey;Axelsson,1998
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献