Host-Based Intrusion Detection System with System Calls

Author:

Liu Ming1,Xue Zhi2,Xu Xianghua3,Zhong Changmin4,Chen Jinjun5ORCID

Affiliation:

1. Shanghai Jiao Tong University, China, and University of Technology Sydney, Australia

2. Shanghai Jiao Tong University, Minhang, Shanghai, China

3. Hangzhou Dianzi University, Hangzhou, Zhejiang, China

4. Joowing Australia, Glen Waverley, VIC, Australia

5. Swinburne University of Technology, Hawthorn, VIC, Australia

Abstract

In a contemporary data center, Linux applications often generate a large quantity of real-time system call traces, which are not suitable for traditional host-based intrusion detection systems deployed on every single host. Training data mining models with system calls on a single host that has static computing and storage capacity is time-consuming, and intermediate datasets are not capable of being efficiently handled. It is cumbersome for the maintenance and updating of host-based intrusion detection systems (HIDS) installed on every physical or virtual host, and comprehensive system call analysis can hardly be performed to detect complex and distributed attacks among multiple hosts. Considering these limitations of current system-call-based HIDS, in this article, we provide a review of the development of system-call-based HIDS and future research trends. Algorithms and techniques relevant to system-call-based HIDS are investigated, including feature extraction methods and various data mining algorithms. The HIDS dataset issues are discussed, including currently available datasets with system calls and approaches for researchers to generate new datasets. The application of system-call-based HIDS on current embedded systems is studied, and related works are investigated. Finally, future research trends are forecast regarding three aspects, namely, the reduction of the false-positive rate, the improvement of detection efficiency, and the enhancement of collaborative security.

Funder

China Scholarship Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3