Affiliation:
1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
2. College of Letters and Science, University of Wisconsin Madison, Madison, WI 53706, USA
Abstract
UAVs are commonly used in forest fire detection, but the captured fire images often suffer from blurring due to the rapid motion between the airborne camera and the fire target. In this study, a multi-input, multi-output U-Net architecture that combines spatial domain and frequency domain information is proposed for image deblurring. The architecture includes a multi-branch dilated convolution attention residual module in the encoder to enhance receptive fields and address local features and texture detail limitations. A feature-fusion module integrating spatial frequency domains is also included in the skip connection structure to reduce feature loss and enhance deblurring performance. Additionally, a multi-channel convolution attention residual module in the decoders improves the reconstruction of local and contextual information. A weighted loss function is utilized to enhance network stability and generalization. Experimental results demonstrate that the proposed model outperforms popular models in terms of subjective perception and quantitative evaluation, achieving a PSNR of 32.26 dB, SSIM of 0.955, LGF of 10.93, and SMD of 34.31 on the self-built forest fire datasets and reaching 86% of the optimal PSNR and 87% of the optimal SSIM. In experiments without reference images, the model performs well in terms of LGF and SMD. The results obtained by this model are superior to the currently popular SRN and MPRNet models.
Funder
Postgraduate Research & Practice Innovation Program of Jiangsu Province
National Key R&D Program of China