Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching

Author:

Fan Xiaoting1,Sun Long2,Zhang Zhong1ORCID,Liu Shuang1ORCID,Durrani Tariq S.3

Affiliation:

1. Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin 300387, China

2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

3. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK

Abstract

As an important representation of scenes in virtual reality and augmented reality, image stitching aims to generate a panoramic image with a natural field-of-view by stitching multiple images together, which are captured by different visual sensors. Existing deep-learning-based methods for image stitching only conduct a single deep homography to perform image alignment, which may produce inevitable alignment distortions. To address this issue, we propose a content-seam-preserving multi-alignment network (CSPM-Net) for visual-sensor-based image stitching, which could preserve the image content consistency and avoid seam distortions simultaneously. Firstly, a content-preserving deep homography estimation was designed to pre-align the input image pairs and reduce the content inconsistency. Secondly, an edge-assisted mesh warping was conducted to further align the image pairs, where the edge information is introduced to eliminate seam artifacts. Finally, in order to predict the final stitched image accurately, a content consistency loss was designed to preserve the geometric structure of overlapping regions between image pairs, and a seam smoothness loss is proposed to eliminate the edge distortions of image boundaries. Experimental results demonstrated that the proposed image-stitching method can provide favorable stitching results for visual-sensor-based images and outperform other state-of-the-art methods.

Funder

Scientific Research Project of Tianjin Educational Committee

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3