Wheelchair Rugby Sprint Force-Velocity Modeling Using Inertial Measurement Units and Sport Specific Parameters: A Proof of Concept

Author:

Klimstra Marc12ORCID,Geneau Daniel12ORCID,Lacroix Melissa34ORCID,Jensen Matt2,Greenshields Joel3ORCID,Cormier Patrick12ORCID,Brodie Ryan2,Commandeur Drew1,Tsai Ming-Chang2ORCID

Affiliation:

1. School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada

2. Canadian Sport Institute Pacific, Victoria, BC V9E 2C5, Canada

3. Canadian Sport Institute Ontario, Toronto, ON M1C 0C7, Canada

4. Wheelchair Rugby Canada, Ottawa, ON K1G 4K3, Canada

Abstract

Background: Para-sports such as wheelchair rugby have seen increased use of inertial measurement units (IMU) to measure wheelchair mobility. The accessibility and accuracy of IMUs have enabled the quantification of many wheelchair metrics and the ability to further advance analyses such as force-velocity (FV) profiling. However, the FV modeling approach has not been refined to include wheelchair specific parameters. Purpose: The purpose of this study was to compare wheelchair rugby sprint FV profiles, developed from a wheel-mounted IMU, using current mono-exponential modeling techniques against a dynamic resistive force model with wheelchair specific resistance coefficients. Methods: Eighteen athletes from a national wheelchair rugby program performed 2 × 45 m all-out sprints on an indoor hardwood court surface. Results: Velocity modelling displayed high agreeability, with an average RMSE of 0.235 ± 0.07 m/s−1 and r2 of 0.946 ± 0.02. Further, the wheelchair specific resistive force model resulted in greater force and power outcomes, better aligning with previously collected measures. Conclusions: The present study highlights the proof of concept that a wheel-mounted IMU combined with wheelchair-specific FV modelling provided estimates of force and power that better account for the resistive forces encountered by wheelchair rugby athletes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3