The Response of Broiler Chickens to Dietary Soybean Meal Reduction with Glycine and Cysteine Inclusion at Marginal Sulfur Amino Acids (SAA) Deficiency

Author:

Elahi UsmanORCID,Wang JingORCID,Ma You-biao,Wu Shu-geng,Qi Guang-haiORCID,Zhang Hai-jun

Abstract

The responses of broiler chickens to dietary protein reduction were investigated in the presence of glycine and cysteine inclusion at the marginal deficiency of sulfur-containing amino acids. A total of 432 broiler chickens were allotted to six dietary treatments; SP1 is standard protein diet with 100% total sulfur amino acids (TSAA), SP2 is standard protein diet with 85% TSAA, RP is reduced protein diet without glycine and cysteine supplementation, RPC is reduced protein diet with cysteine supplementation at 0.1%, and RPG is reduced protein diet with 1% glycine supplementation, while RPGC is reduced protein diet with 0.1% cysteine and 1% glycine supplementation. In this study, 4.5% protein is reduced in diets—thus, 17.5% CP (crude protein) for starter phase and 15.5% CP for the grower phase. Reduced protein diets contained 85% TSAA. Broiler chickens fed standard protein diet SP2 had superior bodyweight (BW) (p ≤ 0.05) in the starter and grower phase, average daily gain (ADG) (p ≤ 0.05) in the starter and entire feeding period, average daily feed intake (ADFI) (p ≤ 0.05) in the starter phase, and better feed conversion ratio (FCR) (p ≤ 0.05) in the starter, grower and entire feeding period; however, RPGC showed higher ADG (p ≤ 0.05) in the grower phase, and ADFI (p ≤ 0.05) in the grower and entire feeding period. RPC and RPG diet improved BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05), and better FCR (p ≤ 0.05) in starter, grower, entire feeding period compared to RP. The RPGC group had higher BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05) and better FCR (p ≤ 0.05) compared to the RPC group. Blood biochemical parameters showed that Broiler chickens fed on the SP2 diet had higher levels of total protein (TP) (p ≤ 0.05), albumin (ALB) (p ≤ 0.05), creatinine (CRE) (p ≤ 0.05), and aspartate aminotransferase (AST) (p ≤ 0.05) and, lower level of uric acid (UA) (p ≤ 0.05), blood urea nitrogen (BUN) (p ≤ 0.05), glucose (GLU) (p ≤ 0.05), and alanine aminotransferase (ALT) (p ≤ 0.05) in the starter phase; however, higher level of TP (p ≤ 0.05), GLU (p ≤ 0.05), CRE (p ≤ 0.05), and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), UA (p ≤ 0.05), and ALT (p ≤ 0.05) in the grower phase; RPGC had higher level of TP (p ≤ 0.05), UA (p ≤ 0.05), GLU (p ≤ 0.05), ALT (p ≤ 0.05) and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), BUN (p ≤ 0.05), and CRE (p ≤ 0.05) in the starter phase; however, in grower phase, RPGC had higher level of TP (p ≤ 0.05), and ALB (p ≤ 0.05), and lower level of UA (p ≤ 0.05), CRE (p ≤ 0.05), ALT (p ≤ 0.05), and AST (p ≤ 0.05). Free amino acids profile showed that broiler fed on standard protein diet SP2 had reduced the methionine (p ≤ 0.05) concentration; RPC increased the concentrations of taurine (p ≤ 0.05), phosphoethanolamine (p ≤ 0.05), threonine (p ≤ 0.05), valine (p ≤ 0.05), isoleucine (p ≤ 0.05), phenylalanine (p ≤ 0.05), ornithine (p ≤ 0.05), and lysine (p ≤ 0.05) and reduced the citrulline (p ≤ 0.05) concentration; RPG increased the concentration of glutamate (p ≤ 0.05), glycine (p ≤ 0.05), cysteine (p ≤ 0.05), and arginine (p ≤ 0.05), and decreased the concentration of tyrosine (p ≤ 0.05); and RPGC increased the concentration of serine (p ≤ 0.05) and reduced the concentration of hydroxyproline (p ≤ 0.05). Serum metabolites analysis showed that reduced protein downregulated the 54 metabolites; however, glycine fortification up-regulated the Benzamide, Pro-Ser, N-Carbamylglutamate, D-gluconate, and Gamma-Glutamylcysteine. Carcass quality showed that SP2 decreased the abdominal fat percentage (p ≤ 0.05). Nitrogen digestibility was higher by the diet RP (p ≤ 0.05). This study demonstrated that protein content could be reduced up to 4.5% with 1% glycine and 0.1% cysteine fortification in diet, which has the potential to inhibit the adverse effect of reduced protein and attain the standard growth performance.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3