Abstract
The responses of broiler chickens to dietary protein reduction were investigated in the presence of glycine and cysteine inclusion at the marginal deficiency of sulfur-containing amino acids. A total of 432 broiler chickens were allotted to six dietary treatments; SP1 is standard protein diet with 100% total sulfur amino acids (TSAA), SP2 is standard protein diet with 85% TSAA, RP is reduced protein diet without glycine and cysteine supplementation, RPC is reduced protein diet with cysteine supplementation at 0.1%, and RPG is reduced protein diet with 1% glycine supplementation, while RPGC is reduced protein diet with 0.1% cysteine and 1% glycine supplementation. In this study, 4.5% protein is reduced in diets—thus, 17.5% CP (crude protein) for starter phase and 15.5% CP for the grower phase. Reduced protein diets contained 85% TSAA. Broiler chickens fed standard protein diet SP2 had superior bodyweight (BW) (p ≤ 0.05) in the starter and grower phase, average daily gain (ADG) (p ≤ 0.05) in the starter and entire feeding period, average daily feed intake (ADFI) (p ≤ 0.05) in the starter phase, and better feed conversion ratio (FCR) (p ≤ 0.05) in the starter, grower and entire feeding period; however, RPGC showed higher ADG (p ≤ 0.05) in the grower phase, and ADFI (p ≤ 0.05) in the grower and entire feeding period. RPC and RPG diet improved BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05), and better FCR (p ≤ 0.05) in starter, grower, entire feeding period compared to RP. The RPGC group had higher BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05) and better FCR (p ≤ 0.05) compared to the RPC group. Blood biochemical parameters showed that Broiler chickens fed on the SP2 diet had higher levels of total protein (TP) (p ≤ 0.05), albumin (ALB) (p ≤ 0.05), creatinine (CRE) (p ≤ 0.05), and aspartate aminotransferase (AST) (p ≤ 0.05) and, lower level of uric acid (UA) (p ≤ 0.05), blood urea nitrogen (BUN) (p ≤ 0.05), glucose (GLU) (p ≤ 0.05), and alanine aminotransferase (ALT) (p ≤ 0.05) in the starter phase; however, higher level of TP (p ≤ 0.05), GLU (p ≤ 0.05), CRE (p ≤ 0.05), and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), UA (p ≤ 0.05), and ALT (p ≤ 0.05) in the grower phase; RPGC had higher level of TP (p ≤ 0.05), UA (p ≤ 0.05), GLU (p ≤ 0.05), ALT (p ≤ 0.05) and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), BUN (p ≤ 0.05), and CRE (p ≤ 0.05) in the starter phase; however, in grower phase, RPGC had higher level of TP (p ≤ 0.05), and ALB (p ≤ 0.05), and lower level of UA (p ≤ 0.05), CRE (p ≤ 0.05), ALT (p ≤ 0.05), and AST (p ≤ 0.05). Free amino acids profile showed that broiler fed on standard protein diet SP2 had reduced the methionine (p ≤ 0.05) concentration; RPC increased the concentrations of taurine (p ≤ 0.05), phosphoethanolamine (p ≤ 0.05), threonine (p ≤ 0.05), valine (p ≤ 0.05), isoleucine (p ≤ 0.05), phenylalanine (p ≤ 0.05), ornithine (p ≤ 0.05), and lysine (p ≤ 0.05) and reduced the citrulline (p ≤ 0.05) concentration; RPG increased the concentration of glutamate (p ≤ 0.05), glycine (p ≤ 0.05), cysteine (p ≤ 0.05), and arginine (p ≤ 0.05), and decreased the concentration of tyrosine (p ≤ 0.05); and RPGC increased the concentration of serine (p ≤ 0.05) and reduced the concentration of hydroxyproline (p ≤ 0.05). Serum metabolites analysis showed that reduced protein downregulated the 54 metabolites; however, glycine fortification up-regulated the Benzamide, Pro-Ser, N-Carbamylglutamate, D-gluconate, and Gamma-Glutamylcysteine. Carcass quality showed that SP2 decreased the abdominal fat percentage (p ≤ 0.05). Nitrogen digestibility was higher by the diet RP (p ≤ 0.05). This study demonstrated that protein content could be reduced up to 4.5% with 1% glycine and 0.1% cysteine fortification in diet, which has the potential to inhibit the adverse effect of reduced protein and attain the standard growth performance.
Funder
National Natural Science Foundation of China
Agricultural Science and Technology Innovation Program
Subject
General Veterinary,Animal Science and Zoology