Advanced Method to Capture the Time-Lag Effects between Annual NDVI and Precipitation Variation Using RNN in the Arid and Semi-Arid Grasslands

Author:

Wu TaosuoORCID,Feng FengORCID,Lin Qian,Bai Hongmei

Abstract

The latest research indicates that there are time-lag effects between the normalized difference vegetation index (NDVI) and the precipitation variation. It is well known that the time-lags are different from region to region, and there are time-lags for the NDVI itself correlated to the precipitation. In the arid and semi-arid grasslands, the annual NDVI has proved not only to be highly dependent on the precipitation of the concurrent year and previous years, but also the NDVI of previous years. This paper proposes a method using recurrent neural network (RNN) to capture both time-lags of the NDVI with respect to the NDVI itself, and of the NDVI with respect to precipitation. To quantitatively capture these time-lags, 16 years of the NDVI and precipitation data are used to construct the prediction model of the NDVI with respect to precipitation. This study focuses on the arid and semi-arid Hulunbuir grasslands dominated by perennials in northeast China. Using RNN, the time-lag effects are captured at a 1 year time-lag of precipitation and a 2 year time-lag of the NDVI. The successful capture of the time-lag effects provides significant value for the accurate prediction of vegetation variation for arid and semi-arid grasslands.

Funder

National Natural Science Foundation of China

Tianjin Research Program of Application Foundation and Advanced Technology

National 973 Program of China

AoShan Talents OS (outstanding scientist) Program Supported by Qingdao National Laboratory for Marine Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3