Relationships between Spatial and Temporal Variations in Precipitation, Climatic Indices, and the Normalized Differential Vegetation Index in the Upper and Middle Reaches of the Heihe River Basin, Northwest China

Author:

Zhong FangleiORCID,Cheng QingpingORCID,Ge YinchunORCID

Abstract

Changes in precipitation are critical indicators of climate change. In this study, the daily precipitation records from 10 meteorological stations in the Heihe River Basin, Northwest China from 1961–2016, precipitation indices, climate indices, and the normalized differential vegetation index (NDVI) were investigated using the Pearson, Kendall, and Spearman correlation coefficients; Theil-Sen Median; Mann–Kendall test; and wavelet coherence. The results indicated that the occurrences (fractional contributions) of 1–2-day wet periods were 81.3% (93.9%) and 55.3% (82.1%) in the upper (UHRB) and middle (MHRB) reaches of the Heihe River Basin, respectively. The spatial distribution of the occurrences (fractional contributions) was almost consistent with non-significant increases/decreases at stations. The ATP, ATD, API, and AMRD increased, while precipitation regimes suggest that dry seasons are getting wetter, and wet seasons are getting drier, although these changes were not significant. Wavelet coherence analyses showed that climate indices influenced precipitation, mainly its concentration, on a 4- to 78.6-month timescale. The Pearson, Kendall, and Spearman correlation coefficients showed weak lagged linkages between precipitation and the North Arctic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). The NDVI of grasslands, meadows and coniferous forests was significantly and positively correlated with precipitation, while the NDVI of alpine vegetation, swamps and shrubs was negatively and significantly correlated with precipitation in the UHRB. The NDVI of grasslands was significantly and positively correlated, but the NDVI of shrubs, coniferous forests and cultivated vegetation was negatively and significantly correlated with precipitation in the MHRB. The correlation between cultivated vegetation and natural precipitation in the MHRB may have been weakened by human activities.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3