A Generative Adversarial Network with Spatial Attention Mechanism for Building Structure Inference Based on Unmanned Aerial Vehicle Remote Sensing Images

Author:

Chen Hao1,Guo Zhixiang1,Meng Xing2,He Fachuan1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150006, China

2. Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China

Abstract

The acquisition of building structures has broad applications across various fields. However, existing methods for inferring building structures predominantly depend on manual expertise, lacking sufficient automation. To tackle this challenge, we propose a building structure inference network that utilizes UAV remote sensing images, with the PIX2PIX network serving as the foundational framework. We enhance the generator by incorporating an additive attention module that performs multi-scale feature fusion, enabling the combination of features from diverse spatial resolutions of the feature map. This modification enhances the model’s capability to emphasize global relationships during the mapping process. To ensure the completeness of line elements in the generator’s output, we design a novel loss function based on the Hough transform. A line penalty term is introduced that transforms the output of the generator and ground truth to the Hough domain due to the original loss function’s inability to effectively constrain the completeness of straight-line elements in the generated results in the spatial domain. A dataset of the appearance features obtained from UAV remote sensing images and the internal floor plan structure is made. Using UAV remote sensing images of multi-story residential buildings, high-rise residential buildings, and office buildings as test collections, the experimental results show that our method has better performance in inferring a room’s layout and the locations of load-bearing columns, achieving an average improvement of 11.2% and 21.1% over PIX2PIX in terms of the IoU and RMSE, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3