Seismic vulnerability assessment of reinforced concrete bridge piers with corroded bars

Author:

De Domenico Dario1ORCID,Messina Davide1ORCID,Recupero Antonino1

Affiliation:

1. Department of Engineering University of Messina Messina Italy

Abstract

AbstractReinforced concrete (RC) structures located in aggressive environment, for example, RC bridge piers close to the sea and experiencing chloride attacks, may be exposed to an increased seismic vulnerability. This requires practical yet effective safety assessment strategies aimed to determine the seismic behavior by incorporating corrosion deterioration phenomena. An easy‐to‐use phenomenological model is here developed to describe the seismic behavior of corroded RC elements based on a fiber hinge formulation wherein the corrosion‐induced mechanical degradation of concrete and steel is implemented through appropriate constitutive laws at the fiber level. The developed fiber hinge formulation is first validated against experimental cyclic tests of corroded RC columns from the literature. Then, the proposed approach is used for the seismic vulnerability assessment of the Zappulla multi‐span viaduct (southern Italy), whose RC bridge piers (with a box‐shaped, two‐cell hollow rectangular cross section) are exposed to carbonation and chloride‐induced corrosion. A comprehensive in‐situ testing campaign is conducted for the mechanical characterization of the materials in the RC piers. Corrosion potential mapping, carbonation tests and tensile tests on corroded bars extracted from RC piers are critically interpreted to calibrate the constitutive laws of the fiber‐hinge model. Motivated by experimental findings, numerical seismic analyses (including linear dynamic, nonlinear static and nonlinear dynamic analyses) are performed under two different corrosion scenarios to quantify the impact of corrosion on the resulting seismic vulnerability conditions of bridge piers with corroded bars. The proposed approach is characterized by low computational cost and lends itself to large‐scale seismic vulnerability assessment of other existing RC bridges placed in corrosive environment.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3