Development of Energy-Efficient Superhydrophobic Polypropylene Fabric by Oxygen Plasma Etching and Thermal Aging

Author:

Kim Shinyoung,Oh Ji-Hyun,Park Chung Hee

Abstract

This study developed a human-friendly energy-efficient superhydrophobic polypropylene (PP) fabric by oxygen plasma etching and short-term thermal aging without additional chemicals. The effect of the microroughness on the superhydrophobicity was examined by adjusting the weave density. After the PP fabric was treated with oxygen plasma etching for 15 min and thermal aging at 120 °C for 1 h (E15H120 1 h), the static contact and shedding angles were 162.7° ± 2.4° and 5.2° ± 0.7° and the energy consumption was 136.4 ± 7.0 Wh. Oxygen plasma etching for 15 min and thermal aging at 120 °C for 24 h (E15H120 24 h) resulted in a static contact and shedding angle of 180.0° ± 0.0° and 1.8° ± 0.2° and energy consumption of 3628.5 ± 82.6 Wh. E15H120 1 h showed a lower shedding angle but had a higher sliding angle of 90°. E15H120 24 h exhibited shedding and sliding angles of less than 10°. Regardless of the thermal aging time, superhydrophobicity was higher in high-density fabrics than in low-density fabrics. The superhydrophobic PP fabric had a similar water vapor transmission rate and air permeability with the untreated PP fabric, and it showed a self-heading property after washing followed by tumble drying and hot pressing.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3