Aging Effect of Plasma-Treated Carbon Fiber Surface: From an Engineering Point

Author:

Wang Shiwen1ORCID,Wang Yu1,Gao Ming1,Huang Yifan1

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Dielectric barrier discharge (DBD) plasma surface modification has certain aging effect. This article studies the aging effect of plasma (DBD) on the surface modification of carbon fibers. The test results show that plasma (DBD) treatment reduces the impurity particles on the surface of carbon fibers and makes the surface texture coarser. In addition, there is no significant change. After plasma (DBD) treatment, the content of C–O–C, C–O and C=O on the surface of carbon fibers increased from 3.20%, 7.76% and 1.64% to 7.06%, 21.50 and 6.08%, respectively. This is due to the high-energy particle bombardment of the fiber surface, which forms activated carbon atoms on the surface. The free electrons of these activated carbon atoms combine with ionized oxygen in the air. However, with the passage of time, the content of C–O–C, C–O and C=O gradually decreases to 3.31%, 8.57% and 1.77%, respectively. This is because some functional groups formed on the treated carbon fiber surface are not firmly bound, and some of these functional groups containing O2 groups will combine with surrounding substances through irreversible chemical oxidation reactions to produce CO2, which leaves the carbon fiber surface as a gas. The treated carbon fibers will immediately become hydrophilic, and the water contact angle decreases from 148.71° to 0°. With the passage of time, the water contact angle gradually increases to 118.16°, and the hydrophobicity recovers.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3