Effects of Hydrothermal Aging of Carbon Fiber Reinforced Polycarbonate Composites on Mechanical Performance and Sand Erosion Resistance

Author:

Fang Mei,Zhang Na,Huang Ming,Lu BoORCID,Lamnawar KhalidORCID,Liu Chuntai,Shen Changyu

Abstract

Carbon fiber reinforced polycarbonate (CF/PC) composites have attracted attention for their excellent performances. However, their performances are greatly affected by environmental factors. In this work, the composites were exposed to hydrothermal aging to investigate the effects of a hot and humid environment. The mechanical properties of CF/PC composites with different aging times (0, 7, 14, 21, 28, 35, and 42 days) were analyzed. It was demonstrated that the storage modulus of CF/PC composites with hot water aged for seven days has the highest value in this sampling period and frequency. Through the solid particle erosion experiment, it was found that the hydrothermal aging causes the deviation of the maximum erosion angle of composites, indicating the composites underwent ductile–brittle transformation. Furthermore, the crack and cavity resulting from the absorption of water was observed via the scanning electron microscope (SEM). This suggested that the hydrothermal aging leads to the plasticization and degradation of CF/PC composites, resulting in a reduction of corrosion resistance.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3