Durability of Ultem 9085 in Marine Environments: A Consideration in Fused Filament Fabrication of Structural Components

Author:

Wang Xiong (Julia)1,Travis Carly1,Sorna Mark T.2,Arola Dwayne13

Affiliation:

1. Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120, USA

2. Naval Undersea Warfare Center, Keyport, WA 98345-7610, USA

3. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2120, USA

Abstract

The long-term durability of polymer components produced by additive manufacturing (AM) in marine conditions is poorly understood. Here, fused filament fabrication (FFF) of Ultem 9085 was conducted and accelerated aging was performed. Two printing orientations (−45/45° and 0/90°) and two sample types (ASTM D638 Type 1 and Type 4) were produced and subjected to accelerated aging in either seawater or air. Results from tensile tests showed that the elastic modulus, yield strength and ultimate tensile strength increased after seawater aging, whereas the elongation to failure decreased. Results of thermogravimetric analysis (TGA) and derivative–TGA curves indicated that hydrolysis occurred after seawater exposure to the polycarbonate (PC) component and changes in structure or hydrogen bonds formed in the polyetherimide (PEI) component. Differential scanning calorimetry showed that physical aging occurred after short exposure periods and low temperature. Longer exposures and higher temperatures resulted in increasing plasticization by water and scission of the PC molecules. Results from Raman suggest that hydrolysis of the PC occurred, with a reduction in free volume produced by physical aging or hydrogen bonding with water molecules. These results highlight that Ultem 9085 is susceptible to degradation in marine environments, and there are two primary mechanisms, including physical and chemical aging. Their specific contribution is highly sensitive to the aging temperature and require careful selection in accelerated aging evaluations.

Funder

Department of Defense through the Naval Engineering Education Consortium

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3