Abstract
In this article, polylactic acid-based composites reinforced with 5% of polyethylene, iron, and magnesium powders were prepared by extrusion and compressed under the pressure of about 10 MPa and characterized. These composites were mechanically, thermally, and morphologically evaluated. It was found, compared to the pure polylactic acid (PLA), an improvement in tensile strength (both σ and YS0.2) was obtained for the composite with the iron powder addition, while the magnesium powder slightly improved the ductility of the composite material (from 2.0 to 2.5%). Degradation studies of these composites in the 0.9% saline solution over a period of 180 days revealed changes in the pH of the solution from acidic to alkaline, in all samples. The most varied mass loss was observed in the case of the PLA-5%Mg sample, where initially the sample mass increased (first 30 days) then decreased, and after 120 days, the mass increased again. In the context of degradation phenomenon of the tested materials, it turns out that the most stable is the PLA composite with the Fe addition (PLA-5%Fe), with highest tensile strength and hardness.
Subject
Polymers and Plastics,General Chemistry
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献