Application of Artificial Neural Networks for Producing an Estimation of High-Density Polyethylene

Author:

Maleki Akbar,Safdari Shadloo MostafaORCID,Rahmat Amin

Abstract

Polyethylene as a thermoplastic has received the uppermost popularity in a vast variety of applied contexts. Polyethylene is produced by several commercially obtainable technologies. Since Ziegler–Natta catalysts generate polyolefin with broad molecular weight and copolymer composition distributions, this type of model was utilized to simulate the polymerization procedure. The EIX (ethylene index) is the critical controlling variable that indicates product characteristics. Since it is difficult to measure the EIX, estimation is a problem causing the greatest challenges in the applicability of production. To resolve such problems, ANNs (artificial neural networks) are utilized in the present paper to predict the EIX from some simply computed variables of the system. In fact, the EIX is calculated as a function of pressure, ethylene flow, hydrogen flow, 1-butane flow, catalyst flow, and TEA (triethylaluminium) flow. The estimation was accomplished via the Multi-Layer Perceptron, Radial Basis, Cascade Feed-forward, and Generalized Regression Neural Networks. According to the results, the superior performance of the Multi-Layer Perceptron model than other ANN models was clearly demonstrated. Based on our findings, this model can predict production levels with R2 (regression coefficient), MSE (mean square error), AARD% (average absolute relative deviation percent), and RMSE (root mean square error) of, respectively, 0.89413, 0.02217, 0.4213, and 0.1489.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference35 articles.

1. Business and Technology of the Global Polyethylene Industry: An In-depth Look at the History, Technology, Catalysts, and Modern Commercial Manufacture of Polyethylene and Its Products;Nowlin,2014

2. Industrial Metal Alkyls and Their Use in Polyolefin Catalysts

3. Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets Set;Spalding,2017

4. Polyethylene;Patel,2016

5. Supported Titanium/Magnesium Ziegler Catalysts for the Production of Polyethylene

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3