Phase Equilibrium and Interdiffusion in Poly(Vinyl Methyl Ether)-Water System

Author:

Nikulova Uliana V.ORCID,Chalykh Anatoly E.

Abstract

The phase state diagram of the poly(vinyl methyl ether)-water system in a wide concentration range was obtained by the optical interferometry method. It was shown that this system was characterized by a complicated phase equilibrium with two lower critical solution temperatures, one of which was located in the concentrated region at 21 °C, and the other one in the region of a dilute solution at 31 °C. In the framework of the Flory–Huggins theory, pair interaction parameters were calculated for different parts of the binodal curves, and an attempt was made to reverse simulate the diagram in different conditions. It was suggested that the unusual character of the diagram was associated with the formation of a complicated complex between PVME and water in the middle region of the compositions. Concentration profiles for different temperatures were constructed. For the first time for this system, the numerical values of the diffusion coefficients of poly(vinyl methyl ether) (PVME) into water and water in PVME were obtained. Concentration and temperature dependences of diffusion coefficients were constructed and analyzed. The kinetics of water sorption in PVME was plotted, the clustering integral was calculated, and the approximate number of molecules in a water cluster was estimated. It was shown that in the dilute solution region upon passing through the binodal curve, the interphase disappeared immediately, and the remaining fluctuation of the concentration decreased in size with time. The kinetics of this process was estimated from the change in the size of such a particle.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference45 articles.

1. Polymer Blends;Paul,2000

2. Poly-N-Vinylpyrrolidone and Other Poly-N-vinylamides: Synthesis and Physico-Chemistry Properties;Kirsh,1998

3. One Thousand and one Polymer. Biostable to Biodegradable;Legon’kova,2004

4. Biotechnology of the production and decomposition of biopolymers;Legon’kova;Encycl. Chem. Eng.,2008

5. Hydrophylic adhesives;Feldstein,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3