Thermal and Electromagnetic Properties of Polymer Holey Structures Produced by Additive Manufacturing

Author:

Lambin PhilippeORCID,Liubimau AliaksandrORCID,Bychanok Dzmitry,Vitale Luca,Kuzhir Polina

Abstract

Multifunctional 3D-printed holey structures made of composite polymers loaded with nanocarbon were designed to serve simultaneously as GHz-radiation absorbing layers and heat conductors. The geometry of the structures was devised to allow heat to be easily transferred through, with special attention paid to thermal conductivity. Numerical calculations and a simple homogenization theory were conducted in parallel to address this property. Different structures have been considered and compared. The electromagnetic shielding effectiveness of the produced holey structures was measured in the microwave range.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference45 articles.

1. Mechanics of Periodically Heterogeneous Structures;Manevitch,2002

2. Deep subwavelength ultrasonic imaging using optimized holey structured metamaterials

3. Low acoustic transmittance through a holey structure

4. Radar Absorbing Materials: From Theory to Design and Characterization;Vinoy,2011

5. Electromagnetic interference (EMI) shielding effectiveness (SE) of polymer-carbon composites;Ram,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3