Advanced Dual−Function Hollow Copper−Sulfide−Based Polyimide Composite Window Film Combining Near−Infrared Thermal Shielding and Organic Pollutants’ Photodegradation

Author:

Liu Xiangfu,Ma Jinming,Shen Jiulin,Zhao Jianqiao,Lu Chengxu,Tu GuoliORCID

Abstract

Window−film−integrated, near−infrared (NIR) absorption−based nanomaterials are of great interest in terms of numerous demands to reduce energy consumption, especially in buildings and vehicles. However, the question of how to effectively manage thermal energy generated from NIR harvesting in light−absorbing materials, rather than being wasted or causing negative effects, remains challenging. Herein, hollow copper sulfide (Cu2−xS) on colorless polyimide (PI) films, enabling them to be well−dispersed and robustly adhered, underwent in situ growth fabrication and were utilized as NIR−thermal−shielding and organic−pollutant−removal dual−function window films. Due to strong NIR absorbance, arising from the heavy hole−doping (copper cation deficiency), the Cu2−xS/PI composite film exhibited great promise for use in the filtration of the NIR spectrum. By monitoring Cu2−xS densities, its NIR−shielding efficiency reached 69.4%, with hundred−percent UV blocking and consistent performance within the reliability (85 °C/85%RH) tests over one week as well as 5000 bending cycles. The integration of the films into model cars and building windows exhibited excellent thermal−shielding performance upon exposure to direct sunlight. Moreover, benefiting from the distinctive distribution of Cu2−xS, the additional thermal energy (holes) generated in NIR absorption was successfully utilized. The densely surface−confined hollow structure of Cu2−xS on PI significantly endowed good formaldehyde catalytic capacity, with removal efficiency reaching approximately 72% within 60 min and a negligible decline after quartic reuse. These integration methodologies enable the promising fabrication of a high−performance, bifunctional window film combining thermal shielding and indoor organic pollutant removal.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physicochemical disposal of nanoengineered materials;Disposal and Recycling Strategies for Nano-Engineered Materials;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3