3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization

Author:

Ahmed WaleedORCID,Siraj SidraORCID,Al-Marzouqi Ali H.

Abstract

Due to the significant properties of silica, thermostatics can be enhanced using silica-additives to maximize the quality of polymer compounds and transform plastics into tailored properties. The silica additives can enhance the handling and quality performance of composites and thermoplastic polymers due to their diverse potential. Besides, using silica as an additive in different characteristics can allow granulates and powders to flow easily, minimize caking, and control rheology. On the other hand, the eruption of 3D printing technology has led to a massive new waste source of plastics, especially the polylactic acid (PLA) that is associated with the fused deposition modeling (FDM) process. In this paper, the impact on the mechanical properties when silica is mixed with waste PLA from 3D printing was studied. The PLA/silica mixtures were prepared using different blends through twin extruders and a Universal Testing Machine was used for the mechanical characterization. The result indicated that increasing silica composition resulted in the increase of the tensile strength to 121.03 MPa at 10 wt%. Similar trends were also observed for the toughness, ductility, and the yield stress values of the PLA/silica blends at 10 wt%, which corresponds to the increased mechanical property of the composite material reinforced by the silica particles. Improvement in the mechanical properties of the developed composite material promotes the effective recycling of PLA from applications such as 3D printing and the potential of reusing it in the same application.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3