A Comparative Investigation of the Reliability of Biodegradable Components Produced through Additive Manufacturing Technology

Author:

ElHassan Amged1,Ahmed Waleed2ORCID,Zaneldin Essam3ORCID

Affiliation:

1. Mechanical and Aerospace Engineering Department, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates

2. Engineering Requirements Unit, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates

3. Civil and Environmental Engineering Department, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates

Abstract

Using the linear elastic finite element method, we investigated how defects significantly influence the integrity of 3D-printed parts made from biodegradable material by experimental techniques and numerical simulations. A defective flaw was incorporated into the tensile test dog-bone sample using Computer-Aided Design and processed by slicing software. Three distinct raster angles examine two sets of samples, one featuring intact specimens and the other with the introduced defects. An open-source 3D printer was used to fabricate both sets of samples, utilizing biodegradable PLA material. In finite element analysis, we employed a highly detailed model that precisely accounted for the geometry and dimensions of the extruded 3D-printed filament, accurately replicating the actual configuration of the 3D-printed samples to an extent. Our study involved a thorough comparative analysis between the experimental results and the FEA simulations. Our findings uncovered a consistent trend for the intact and defective samples under tensile load. Specifically, in the intact case, the samples with a zero-degree raster orientation presented the highest resistance to failure and displayed minimal elongation. Remarkably, these conclusions paralleled our observations of the defective samples as well. Finite element analysis revealed that the stresses, including Principal, Max shear, and Von Mises, were remarkably higher at the 3D-printed samples’ outer surface than the inner layers, reflecting that the failure starts at the outer surface since they exceeded the theoretical values, indicating a significant discrepancy between the simulated and anticipated values.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3