Multiscale Analysis for Identifying the Impact of Human and Natural Factors on Water-Related Ecosystem Services

Author:

Jiang Yuncheng1,Ouyang Bin1,Yan Zhigang1

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Accurately identifying and obtaining changes in ecosystem drivers and the spatial heterogeneity of their impacts on ecosystem services can provide comprehensive support information for ecological governance. In this study, we investigate the changes in the relationship between human and natural factors and water-related ecosystem services (WESs) in different sub-watersheds across various time periods, focusing on four aspects: single-factor effect, nonlinear effect, interactive effects, and spatial characteristics. Taking the southern basins, which have complex topographic, climatic, and economic characteristics, as a study area, the study area was divided into four sub-basins with different characteristics. WESs of water yield, soil conservation, and water purification were quantified using the InVEST model for five periods from 2000 to 2020, and the OPGD and MGWR models were integrated to assess the impacts of 15 factors on WESs and their spatial characteristics. The results show the following: (1) After comparing the data over multiple time periods, climate factors such as precipitation (0.4033) are the primary factors affecting WESs in the southern basins, and human factors such as construction area (0.0688) have a weaker influence. The direct impact of human factors on WESs is not significant in the short term but increases over time. (2) Different sub-watersheds have different impacts on WESs. For instance, human activity intensity (0.3518) is a key factor affecting WESs in the Inward Flowing Area, while precipitation is the primary factor influencing WESs in other sub-watersheds. (3) Influencing factors and WES changes are often nonlinearly correlated; however, once a certain threshold is exceeded, they may have adverse impacts on WESs. (4) When a single factor interacts with other factors, its explanatory power tends to increase. (5) Compared to traditional methods, the estimation accuracy of MGWR is higher. Intense human activities can adversely affect WESs, while abundant precipitation creates favorable conditions for the formation of WESs. Therefore, integrating long-time-series multi-remote sensing data with OPGD and MGWR models is suitable for identifying and analyzing the driving mechanisms of human and natural factors that influence changes in WESs. Against the backdrop of global change, elucidating the driving factors of ecosystem services can provide crucial insights for developing practical policies and land management applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Graduate Innovation Program of China University of Mining and Technology

Publisher

MDPI AG

Reference79 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3