Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production

Author:

Lavagi Valeria1,Kaplan Jonathan2,Vidalakis Georgios1,Ortiz Michelle1,Rodriguez Michael V.3,Amador Madison1,Hopkins Francesca3,Ying Samantha3,Pagliaccia Deborah1ORCID

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA

2. Department of Economics, California State University, Sacramento, CA 95819, USA

3. Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA

Abstract

Applying bokashi (Bok) at 10% volume/volume (v/v), biochar (BC) at 10% v/v, and their combination (Bok_BC) as soil amendments significantly enhances citrus nursery production, improving plant growth and soil health, alongside offering notable economic benefits. Our greenhouse experiment evaluated these treatments across two fertilizer doses, at half (700 μS/cm) and full (1400 μS/cm) electrical conductivity (EC) levels, compared to a control mix, demonstrating improved nutrient availability, water retention, growth rates, and potential for carbon sequestration. Based on the results of this experiment, a cost–benefit analysis was performed; the BC treatment yielded substantial savings, particularly in large nurseries where BC at 700 μS/cm electrical conductivity (EC) saved USD 1356.38 per day and the same treatment at 1400 μS/cm EC saved USD 1857.53. These savings stem from increased nutrient contents (N, P, and K) and improved water retention, reducing irrigation; shortened growth cycles due to enhanced growth rates were observed, indirectly suggesting reduced electricity costs for greenhouse operations. Additionally, the increased carbon content within the soil points toward long-term benefits from carbon sequestration, further contributing to the sustainability and economic viability of these practices. These findings highlight the economic advantage of incorporating Bok and BC into soil mixes, providing a cost-effective strategy for enhancing greenhouse agriculture sustainability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3