The Impact of Growth-Promoting Streptomycetes Isolated from Rhizosphere and Bulk Soil on Oilseed Rape (Brassica napus L.) Growth Parameters

Author:

Cinkocki Renata,Lipková Nikola,Javoreková Soňa,Petrová Jana,Maková Jana,Medo Juraj,Ducsay Ladislav

Abstract

Inoculation of Streptomyces to improve oilseed rape (Brassica napus L.) yields and minimise the use of chemical fertilisers is a promising sustainable strategy. In this study, we isolated 72 actinobacterial strains from rhizosphere of oilseed rape and maize and from bulk soil for screening and characterising their antimicrobial activity. Nine promising strains, identified as Streptomyces sp. by morphology, physiological characteristics, and 16S rRNA gene sequencing, were selected for their plant growth-promoting traits and in planta experiments. The actinobacterial strains were positive for IAA production, siderophore production, and HCN production. In planta experiments were conducted by soaking the oilseed rape seeds in the actinobacterial suspension, followed by plant growth under controlled conditions in a cultivate chamber (22–28 °C, 8 h dark/16 h light, constant humidity 80%). We recorded root and shoot length (cm) and seedling fresh weight (g). For most of the abovementioned parameters, a significant enhancement was observed with strain KmiRC20A118 treatment. The length of the root increased by 53.14%, the shoot length increased by 65.6%, and the weight of the fresh plant by 60% compared to the control. The integrated application of PGPS (Plant Growth Promoting Streptomyces) from the rhizosphere of oilseed rape is a promising strategy to improve the growth of oilseed rape.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference93 articles.

1. Study of dry matter partitioning into leaf, stem and pod at different oilseed rape cultivars

2. Oilseed Rape

3. Study of drought and plant growth promoting rhizobacteria (PGPR) on radiation use efficiency and dry matter partitioning into pod in different cultivars of oilseed rape (Brassica napus L.);Arvin;J. Agroecol.,2016

4. Oilseed Rape

5. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3