Anti-Diabetic Potential of Sargassum horneri and Ulva australis Extracts In Vitro and In Vivo

Author:

Lee Young-Hyeon1ORCID,Kim Hye-Ran2ORCID,Yeo Min-Ho1,Kim Sung-Chun3,Hyun Ho-Bong3,Ham Young-Min3ORCID,Jung Yong-Hwan3,Kim Hye-Sook4ORCID,Chang Kyung-Soo1

Affiliation:

1. Department of Clinical Laboratory Science, Catholic University of Pusan, Busan 46252, Republic of Korea

2. Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan 47230, Republic of Korea

3. Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea

4. Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan

Abstract

Sargassum horneri (SH) and Ulva australis (UA) are marine waste resources that cause environmental and economic problems when entering or multiplying the coastal waters of Jeju Island. We analyzed their anti-diabetic efficacy to assess their reusability as functional additives. The alpha-glucosidase inhibitory activity of SH and UA extracts was confirmed, and the effect of UA extract was higher than that of SH. After the induction of insulin-resistant HepG2 cells, the effects of the two marine extracts on oxidative stress, intracellular glucose uptake, and glycogen content were compared to the positive control, metformin. Treatment of insulin-resistant HepG2 cells with SH and UA resulted in a concentration-dependent decrease in oxidative stress and increased intracellular glucose uptake and glycogen content. Moreover, SH and UA treatment upregulated the expression of IRS-1, AKT, and GLUT4, which are suppressed in insulin resistance, to a similar degree to metformin, and suppressed the expression of FoxO1, PEPCK involved in gluconeogenesis, and GSK-3β involved in glycogen metabolism. The oral administration of these extracts to rats with streptozotocin-induced diabetes led to a higher weight gain than that in the diabetic group. Insulin resistance and oral glucose tolerance are alleviated by the regulation of blood glucose. Thus, the SH and UA extracts may be used in the development of therapeutic agents or supplements to improve insulin resistance.

Funder

Jeju Special Self-Governing Province’s Organic Waste Industrialization Project

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3