Abstract
Modern energy automation solutions and demand response applications rely on load profiles to monitor and manage electricity consumption effectively. The introduction of smart control systems capable of handling additional fuzzy parameters, such as weather data, through machine learning methods, offers valuable insights in an attempt to adjust consumer behavior optimally. Following recent advances in the field of fuzzy control, this study presents the design and implementation of a fuzzy control system that processes environmental data in order to recommend minimum energy consumption values for a residential building. This system follows the forward chaining Mamdani approach and uses decision tree linearization for rule generation. Additionally, a hybrid feature selector is implemented based on XGBoost and decision tree metrics for feature importance. The proposed structure discovers and generates a small set of fuzzy rules that highlights the energy consumption behavior of the building based on time-series data of past operation. The response of the fuzzy system based on sample input data is presented, and the evaluation of its performance shows that the rule base generation is derived with improved accuracy. In addition, an overall smaller set of rules is generated, and the computation is faster compared to the baseline decision tree configuration.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献