Forecasting energy demand and efficiency in a smart home environment through advanced ensemble model: Stacking and voting

Author:

Drir Nadia1,Kebour Younes2

Affiliation:

1. Faculty of Electrical Engineering, University of Science and Technology Houari Boumediene (USTHB), BP 32, El Alia, 16111 Bab-Ezzouar, Algiers, Algeria

2. Faculty of Computer Science, University of Science and Technology Houari Boumediene (USTHB), BP 32, El Alia, 16111 Bab-Ezzouar, Algiers, Algeria

Abstract

Smart homes integrate several sensors to facilitate information exchange and the execution of tasks. In addition, with the development of the Internet of Things (IoT) platforms, the control of appliances and remote devices has become possible. This sensor collects data in real time to closely monitor the devices of a user’s household. The present study employs a machine learning methodology to perform a global analysis of energy consumption and efficiency in smart homes. In This work we propose two advanced ensemble models to improve the performance of energy consumption in smart homes, the first one is a voting ensemble model based on a ranking weight averaging that combines following basic machine learning techniques: decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGB). The second one is the stacking ensemble model in which the basic models (DT-RF-XGB) are combined through stacked generalization, then uses a secondary layer model or meta-learner (RF) to provide output prediction. The findings obtained show that the proposed ensemble model based on DT-RF-XGB using stacking technique surpasses all other basic algorithms with R2 around 0.9825.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3