An Integrated Artificial Intelligence of Things Environment for River Flood Prevention

Author:

Boulouard ZakariaORCID,Ouaissa MariyamORCID,Ouaissa MariyaORCID,Siddiqui Farhan,Almutiq MutiqORCID,Krichen Moez

Abstract

River floods are listed among the natural disasters that can directly influence different aspects of life, ranging from human lives, to economy, infrastructure, agriculture, etc. Organizations are investing heavily in research to find more efficient approaches to prevent them. The Artificial Intelligence of Things (AIoT) is a recent concept that combines the best of both Artificial Intelligence and Internet of Things, and has already demonstrated its capabilities in different fields. In this paper, we introduce an AIoT architecture where river flood sensors, in each region, can transmit their data via the LoRaWAN to their closest local broadcast center. The latter will relay the collected data via 4G/5G to a centralized cloud server that will analyze the data, predict the status of the rivers countrywide using an efficient Artificial Intelligence approach, and thus, help prevent eventual floods. This approach has proven its efficiency at every level. On the one hand, the LoRaWAN-based communication between sensor nodes and broadcast centers has provided a lower energy consumption and a wider range. On the other hand, the Artificial Intelligence-based data analysis has provided better river flood predictions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling an evaluation framework for adding IoT water-level sensors based on ANN-derived 2D inundation simulations;Journal of Hydroinformatics;2024-08-20

2. AI and IoT Integration for Natural Disaster Management;Advances in Computational Intelligence and Robotics;2024-06-28

3. Formal Methods for Enhanced Natural Disaster Management;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

4. Efficient Approaches for Safeguarding Sensitive Data during Natural Disasters;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

5. Security and Privacy Challenges of Participatory Sensing in Natural Disaster Management;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3