Using SWAT Model to Assess the Impacts of Land Use and Climate Changes on Flood in the Upper Weihe River, China

Author:

Liu Yinge,Xu Yuxia,Zhao YaqianORCID,Long Yan

Abstract

Flood disasters have occurred frequently in recent years, but there is no consensus on the mechanism and influencing factors. Taking the upper reaches of Weihe River Basin as a case in Western China, a soil and water assessment tool (SWAT) model was established to quantitatively simulate the impact of land use and climate change on runoff changes, while 4 extreme land-use scenarios and 24 temperature and precipitation scenarios assumptions were proposed to simulate the response of runoff to land use and climate changes. The SWAT simulation results showed that the sensitivity parameters affecting the model simulation were the CANMX, CN2, SOL_K, CH_N2, and SOL_AWC. The correlation index R2 and the efficiency coefficient ENS of the upper Weihe River were both in the range of 0.75–0.78, the relative error PS between the simulated results and the measured runoff was below 10%, suggesting the good applicability of the SWAT model in this study area. Using the improved SWAT model to simulate the peak runoff (flood) simulation value is generally smaller than the measured value, and the absolute value of the error is less than 6%. The expansion of wasteland increased the runoff by over 90% on average, the expansion of cultivated land increased the runoff by 8% on average, and the expansion of woodland and grassland increased the surface runoff by 6% on average. When the precipitation decreased by 25% and the temperature increased by 22%, the smallest runoff was obtained in the simulation. Accordingly, when the precipitation increased by 25% and the temperature decreased by 22%, the maximum annual runoff was obtained. By decomposing the contribution rate of human activities and climate change to runoff, it showed that the contribution rate of human activities to the reduction of runoff was greater than that of climate change. This study can provide scientific reference for the simulation and prediction of future floods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

1. A modelling framework to design an evacuation support system for healthcare infrastructures in response to major flood events

2. Investing in flood protection in Asia: An empirical study focusing on the relationship between investment and damage

3. Assessing flood vulnerability on livelihood of the local community: A case from southern Bagmati corridor of Nepal

4. Water resources vulnerability assessment method and its application under the influence of climate change;Xia;Adv. Ear. Sci.,2012

5. Research progress of meteorological and hydrological forecasting under changing environment;Lei;J. Hydrol. Eng.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3