Intelligent Sea States Identification Based on Maximum Likelihood Evidential Reasoning Rule

Author:

Zhang Xuelin,Xu Xiaojian,Xu Xiaobin,Gao Diju,Gao Haibo,Wang GuodongORCID,Grosu Radu

Abstract

It is necessary to switch the control strategies for propulsion system frequently according to the changes of sea states in order to ensure the stability and safety of the navigation. Therefore, identifying the current sea state timely and effectively is of great significance to ensure ship safety. To this end, a reasoning model that is based on maximum likelihood evidential reasoning (MAKER) rule is developed to identify the propeller ventilation type, and the result is used as the basis for the sea states identification. Firstly, a data-driven MAKER model is constructed, which fully considers the interdependence between the input features. Secondly, the genetic algorithm (GA) is used to optimize the parameters of the MAKER model in order to improve the evaluation accuracy. Finally, a simulation is built to obtain experimental data to train the MAKER model, and the validity of the model is verified. The results show that the intelligent sea state identification model that is based on the MAKER rule can identify the propeller ventilation type more accurately, and finally realize intelligent identification of sea states.

Funder

NSFC

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference32 articles.

1. Motor technology applied in naval ship electric drive propulsion;Hua;Micromotors,2015

2. Application of Direct-Drive Technology in Marine Electric Propulsion

3. Numerical analysis of surface piercing propeller in unsteady conditions and cupped effect on ventilation pattern of blade cross-section

4. Simulation Study on Control Strategy of Electric Propulsion System under Severe Sea Conditions;Dou,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3