A Data Classifier Based on Maximum Likelihood Evidential Reasoning Rule

Author:

He Hong1,Zhang Xuelin2,Xu Xiaobin3ORCID,Li Zhongrong2,Bai Yu4,Liu Fang5,Steyskal Felix6,Brunauer Georg7

Affiliation:

1. School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China

2. School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China

3. China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, China

4. Hospital, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China

5. School of Accounting, Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China

6. Maschinen-Umwelttechnik-Transportanlagen Gmbh, Schießstattgasse 49, Stockerau 2000, Austria

7. TU Wien, Institute for Energy Systems and Thermodynamics, Getreidemarkt 9, Vienna 1060, Austria

Abstract

In Dempster–Shafer evidence theory (DST), some classical evidence combination rules can be used to fuse the multiple pieces of evidence, respectively abstracted from different attributes (features) so as to increase the accuracy of multiattribute classification decision making. However, most of them have not yet considered the interdependence among multiple pieces of evidence. The newly proposed maximum likelihood evidential reasoning (MAKER) rule measures such ubiquitous interdependence by introducing correlation factors into evidence combination. Hence, this paper designs a MAKER-based classifier to mine more correlation information for data classification. Finally, some numerical analysis (classification) experiments are carried out using five popular benchmark databases from the University of California, Irvine (UCI) to illustrate that the refined measure for evidence interdependence can aggregate the fused probability (belief degree) into real class label of a sample and further improve classification accuracy.

Funder

Zhejiang Provincial Outstanding Youth Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3