The Efficacy and Utility of Lower-Dimensional Riemannian Geometry for EEG-Based Emotion Classification

Author:

Al-Mashhadani Zubaidah1ORCID,Bayat Nasrin1ORCID,Kadhim Ibrahim F.2,Choudhury Renoa2ORCID,Park Joon-Hyuk2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA

2. Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA

Abstract

Electroencephalography (EEG) signals have diverse applications in brain-computer interfaces (BCIs), neurological condition diagnoses, and emotion recognition across healthcare, education, and entertainment domains. This paper presents a robust method that leverages Riemannian geometry to enhance the accuracy of EEG-based emotion classification. The proposed approach involves adaptive feature extraction using principal component analysis (PCA) in the Euclidean space to capture relevant signal characteristics and improve classification performance. Covariance matrices are derived from the extracted features and projected onto the Riemannian manifold. Emotion classification is performed using the minimum distance to Riemannian mean (MDRM) classifier. The effectiveness of the method was evaluated through experiments on four datasets, DEAP, DREAMER, MAHNOB, and SEED, demonstrating its generalizability and consistent accuracy improvement across different scenarios. The classification accuracy and robustness were compared with several state-of-the-art classification methods, which supports the validity and efficacy of using Riemannian geometry for enhancing the accuracy of EEG-based emotion classification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3