Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review

Author:

Houssein Essam H.ORCID,Hammad Asmaa,Ali Abdelmgeid A.

Abstract

AbstractAffective computing, a subcategory of artificial intelligence, detects, processes, interprets, and mimics human emotions. Thanks to the continued advancement of portable non-invasive human sensor technologies, like brain–computer interfaces (BCI), emotion recognition has piqued the interest of academics from a variety of domains. Facial expressions, speech, behavior (gesture/posture), and physiological signals can all be used to identify human emotions. However, the first three may be ineffectual because people may hide their true emotions consciously or unconsciously (so-called social masking). Physiological signals can provide more accurate and objective emotion recognition. Electroencephalogram (EEG) signals respond in real time and are more sensitive to changes in affective states than peripheral neurophysiological signals. Thus, EEG signals can reveal important features of emotional states. Recently, several EEG-based BCI emotion recognition techniques have been developed. In addition, rapid advances in machine and deep learning have enabled machines or computers to understand, recognize, and analyze emotions. This study reviews emotion recognition methods that rely on multi-channel EEG signal-based BCIs and provides an overview of what has been accomplished in this area. It also provides an overview of the datasets and methods used to elicit emotional states. According to the usual emotional recognition pathway, we review various EEG feature extraction, feature selection/reduction, machine learning methods (e.g., k-nearest neighbor), support vector machine, decision tree, artificial neural network, random forest, and naive Bayes) and deep learning methods (e.g., convolutional and recurrent neural networks with long short term memory). In addition, EEG rhythms that are strongly linked to emotions as well as the relationship between distinct brain areas and emotions are discussed. We also discuss several human emotion recognition studies, published between 2015 and 2021, that use EEG data and compare different machine and deep learning algorithms. Finally, this review suggests several challenges and future research directions in the recognition and classification of human emotional states using EEG.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3