Globalized Knowledge-Based, Simulation-Driven Antenna Miniaturization Using Domain-Confined Surrogates and Dimensionality Reduction

Author:

Koziel Slawomir12ORCID,Pietrenko-Dabrowska Anna12ORCID,Golunski Lukasz2

Affiliation:

1. Engineering Optimization & Modeling Center, Reykjavik University, 102 Reykjavik, Iceland

2. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland

Abstract

The design of contemporary antenna systems encounters multifold challenges, one of which is a limited size. Compact antennas are indispensable for new fields of application such as the Internet of Things or 5G/6G mobile communication. Still, miniaturization generally undermines electrical and field performance. When attempted using numerical optimization, it turns into a constrained problem with costly constraints requiring electromagnetic (EM) simulations. At the same time, due to the parameter redundancy of compact antennas, size reduction poses a multimodal task. In particular, the achievable miniaturization rate heavily depends on the starting point, while identifying a suitable starting point is a challenge on its own. These issues indicate that miniaturization should be addressed using global optimization methods. Unfortunately, the most popular nature-inspired algorithms cannot be applied for solving size reduction tasks because of their inferior computational efficacy and difficulties in handling constraints. This work proposes a novel methodology for the globalized size reduction of antenna structures. Our methodology is a multi-stage knowledge-based procedure, initialized with the detection of the approximate location of the feasible region boundary, followed by the construction of a dimensionality-reduced metamodel and global optimization thereof; the last stage is the miniaturization-oriented local refinement of geometry parameters. For cost reduction, the first stages of the procedure are realized with the use of a low-fidelity EM antenna model. Our approach is verified using four broadband microstrip antennas and benchmarked against multi-start local search as well as nature-inspired methods. Superior size reduction rates are demonstrated for all considered cases while maintaining reasonably low computational costs.

Funder

Icelandic Centre for Research

National Science Centre of Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3