Study on Asymmetric Support of Anchor Cable with C-Shaped Tube in Inclined Coal Seam Roadway

Author:

Shan Renliang1,Li Tianwen1ORCID,Liu Weijun1ORCID,Chen Ye1,Shi Shuguo1,Li Gengzhao1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

In view of the complex asymmetric deformation characteristics of inclined coal seam roadways and the tensed shear failure of anchor cable supports, the asymmetric support scheme of an anchor cable with a C-shaped tube is proposed. In order to study its supporting effect on an inclined coal seam roadway, this paper first explores the difference in shear performance between an anchor cable with a C-shaped tube and an anchor cable through double shear tests. Then, based on the asymmetric deformation characteristics of an inclined coal seam roadway in the Pangpangta Mine, a numerical simulation is used to study the asymmetric support effect of an anchor cable with a C-shaped tube in an inclined coal seam roadway. The results of the double shear test show that the anchor cable with the C-shaped tube has stronger resistance to shear load than that of the anchor cable. Through the results of the numerical simulation, the original stress field distribution on both sides of the roadway was found to be uneven due to the influence of the coal seam dip angle, and after the excavation of the inclined coal seam roadway, the displacement and plastic zone distribution on both sides showed obvious asymmetric characteristics. Compared with the symmetric support, the asymmetric support can obviously alleviate the asymmetric deformation characteristics of the two sides and effectively control the deformation and plastic failure zone of the roadway. The anchor cable with the C-shaped tube has better resistance to shear deformation than that of the anchor cable. The anchor cable with the C-shaped tube can reduce the deformation and plastic area of the roadway more effectively.

Funder

National Natural Science Foundation of China-Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3