Study of the Evolution of Water-Conducting Fracture Zones in Overlying Rock of a Fully Mechanized Caving Face in Gently Inclined Extra-Thick Coal Seams

Author:

Zhou Yang,Yu Xueyi

Abstract

To study the caving of thick hard overburdens and evolution of water-conducting fracture zones in fully mechanized top-coal caving faces of gently inclined extra-thick coal seams, we comprehensively analyzed the 8103 working face of the Beixinyao Coal Mine. We investigated to the caving characteristics of thick hard overburden in fully mechanized top-coal caving faces, fracture information of the internal structure of overburden, and development heights of the “two zones” of overburden after coal mining. Our research methods included those of similarity simulation experiments, such as the use of microseismic monitoring systems, numerical simulations, theoretical analysis, and engineering practice. The results showed that the overlying strata generally experienced stages of roof caving, crack formation, delamination, crack development, and surface subsidence. Due to the influence of overlying strata movement and mining, the separation layer experienced an evolution process called “emergence-development-closure”, where the height of the overlying strata caving envelope increases with the advancing of the working face. When full mining was achieved, the overlying strata caving height was stable, and the height development range of the water-conducting fracture zone was 100–120 m, which is consistent with the height of the overlying strata caving envelope. Most microseismic events occurred near the water-conducting fracture zone, and the water-conducting fracture zone was formed in an area with concentrated energy density. In our numerical simulation, the concentrated distribution area of the fracture field was characterized by a “bridge arch”. The fracture development model in the middle of the goaf was higher than at both ends of the working face, and roof strata deformation was obvious. When the energy value of microseismic event reaches 108.708 J, cracks are produced, and these cracks gradually penetrate to form water-conducting fracture zones. Engineering practice showed that the height range of the water-conducting fracture zone was 98–123 m, and caving of the thick hard overburden and evolution of the water-conducting fracture zone in a fully mechanized top-coal caving face provide a scientific basis for water prevention and control.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3