NTPP-MVSNet: Multi-View Stereo Network Based on Neighboring Tangent Plane Propagation

Author:

Zhao Qi1ORCID,Deng Yangyan1ORCID,Yang Yifan2ORCID,Li Yawei3ORCID,Yuan Ding3ORCID

Affiliation:

1. Department of Electronic and Information Engineering, Beihang University, Beijing 100191, China

2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China

3. School of Astronautics, Beihang University, Beijing 100191, China

Abstract

Although learning-based multi-view stereo algorithms have produced exciting results in recent years, few researchers have explored the specific role of deep sampling in the network. We posit that depth sampling accuracy more directly impacts the quality of scene reconstruction. To address this issue, we proposed NTPP-MVSNet, which utilizes normal vector and depth information from neighboring pixels to propagate tangent planes. Based on this, we obtained a more accurate depth estimate through homography transformation. We used deformable convolution to acquire continuous pixel positions on the surface and 3D-UNet to account for the regression of depth and normal vector maps without consuming additional GPU memory. Finally, we applied homography transformation to complete the mapping of the imaging plane and the neighborhood surface tangent plane to generate a depth hypothesis. Experimental trials on the DTU and Tanks and Temples datasets demonstrate the feasibility of NTPP-MVSNet, and ablation experiments confirm the superior performance of our deep sampling methodology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3