IMNets: Deep Learning Using an Incremental Modular Network Synthesis Approach for Medical Imaging Applications

Author:

Ali RedhaORCID,Hardie Russell C.ORCID,Narayanan Barath NarayananORCID,Kebede Temesguen M.

Abstract

Deep learning approaches play a crucial role in computer-aided diagnosis systems to support clinical decision-making. However, developing such automated solutions is challenging due to the limited availability of annotated medical data. In this study, we proposed a novel and computationally efficient deep learning approach to leverage small data for learning generalizable and domain invariant representations in different medical imaging applications such as malaria, diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS approach is to use small network modules that we call SubNets which are capable of generating salient features for a particular problem. Then, we build up ever larger and more powerful networks by combining these SubNets in different configurations. At each stage, only one new SubNet module undergoes learning updates. This reduces the computational resource requirements for training and aids in network optimization. We compare IMNets against classic and state-of-the-art deep learning architectures such as AlexNet, ResNet-50, Inception v3, DenseNet-201, and NasNet for the various experiments conducted in this study. Our proposed IMNS design leads to high average classification accuracies of 97.0%, 97.9%, and 88.6% for malaria, diabetic retinopathy, and tuberculosis, respectively. Our modular design for deep learning achieves the state-of-the-art performance in the scenarios tested. The IMNets produced here have a relatively low computational complexity compared to traditional deep learning architectures. The largest IMNet tested here has 0.95 M of the learnable parameters and 0.08 G of the floating-point multiply–add (MAdd) operations. The simpler IMNets train faster, have lower memory requirements, and process images faster than the benchmark methods tested.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference70 articles.

1. Scaling vision transformers;Zhai;arXiv,2021

2. Scaling Vision with Sparse Mixture of Experts;Riquelme;arXiv,2021

3. Image Classification on ImageNe https://paperswithcode.com/sota/image-classification-on-imagenet

4. Structural Analysis and Optimization of Convolutional Neural Networks with a Small Sample Size

5. Solving Current Limitations of Deep Learning Based Approaches for Plant Disease Detection

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3