On Interpretational Questions for Quantum-Like Modeling of Social Lasing

Author:

Khrennikov Andrei,Alodjants Alexander,Trofimova Anastasiia,Tsarev Dmitry

Abstract

The recent years were characterized by increasing interest to applications of the quantum formalism outside physics, e.g., in psychology, decision-making, socio-political studies. To distinguish such approach from quantum physics, it is called quantum-like. It is applied to modeling socio-political processes on the basis of the social laser model describing stimulated amplification of social actions. The main aim of this paper is establishing the socio-psychological interpretations of the quantum notions playing the basic role in lasing modeling. By using the Copenhagen interpretation and the operational approach to the quantum formalism, we analyze the notion of the social energy. Quantum formalizations of such notions as a social atom, s-atom, and an information field are presented. The operational approach based on the creation and annihilation operators is used. We also introduce the notion of the social color of information excitations representing characteristics linked to lasing coherence of the type of collimation. The Bose–Einstein statistics of excitations is coupled with the bandwagon effect, one of the basic effects of social psychology. By using the operational interpretation of the social energy, we present the thermodynamical derivation of this quantum statistics. The crucial role of information overload generated by the modern mass-media is emphasized. In physics laser’s resonator, the optical cavity, plays the crucial role in amplification. We model the functioning of social laser’s resonator by “distilling” the physical scheme from connection with optics. As the mathematical basis, we use the master equation for the density operator for the quantum information field.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference84 articles.

1. Atom and Archetype. The Pauli/Jung Letters 1932–1958;Jung,2014

2. The Pauli–Jung Conjecture: And Its Impact Today,2014

3. Process and Reality;Whitehead,1929

4. Adventures of Ideas;Whitehead,1933

5. Brain and physics of many-body problems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3