Mean-field theory of social laser

Author:

Alodjants Alexander P.,Bazhenov A. Yu.,Khrennikov A. Yu.,Bukhanovsky A. V.

Abstract

AbstractIn this work we suggest a novel paradigm of social laser (solaser), which can explain such Internet inspired social phenomena as echo chambers, reinforcement and growth of information cascades, enhancement of social actions under strong mass media operation. The solaser is based on a well-known in quantum physics laser model of coherent amplification of the optical field. Social networks are at the core of the solaser model; we define them by means of a network model possessing power–law degree distribution. In the solaser the network environment plays the same role as the gain medium has in a physical laser device. We consider social atoms as decision making agents (humans or even chat bots), which possess two (mental) states and occupy the nodes of a network. The solaser establishes communication between the agents as absorption and spontaneous or stimulated emission of socially actual information within echo chambers, which mimic an optical resonator of a convenient (physical) laser. We have demonstrated that social lasing represents the second order nonequilibrium phase transition, which evokes the release of coherent socially stimulated information field represented with the order parameter. The solaser implies the formation of macroscopic social polarization and results in a huge social impact, which is realized by viral information cascades occurring in the presence of population imbalance (social bias). We have shown that decision making agents follow an adiabatically time dependent mass media pump, which acts in the network community reproducing various reliable scenarios for information cascade evolution. We have also shown that in contrast to physical lasers, due to node degree peculiarities, the coupling strength of decision making agents with the network may be enhanced $$\sqrt{\langle k\rangle }$$ k times. It leads to a large increase of speed, at which a viral message spreads through a social media. In this case, the mass media pump supports additional reinforcement and acceleration of cascade growth. We have revealed that the solaser model in some approximations possesses clear links with familiar Ising and SIS (susceptible-infected-susceptible) models typically used for evaluating a social impact and information growth, respectively. However, the solaser paradigm can serve as a new platform for modelling temporal social events, which originate from “microscopic” (quantum-like) processes occurring in the society. Our findings open new perspectives for interdisciplinary studies of distributed intelligence agents behavior associated with information exchange and social impact.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Stuff We Swim in: Regulation Alone Will Not Lead to Justifiable Trust in AI;IEEE Technology and Society Magazine;2023-12

2. What Is Psychological Spin? A Thermodynamic Framework for Emotions and Social Behavior;Psych;2023-11-30

3. Random Lasers as Social Processes Simulators;Entropy;2023-11-29

4. Opinion Formation and Social Impact in Networks with Natural and Artificial Intelligence Systems;2023 16th International Conference Management of large-scale system development (MLSD);2023-09-26

5. Mechanisms For Information Enhancement In Distributed Intelligent Network Systems;2023 16th International Conference Management of large-scale system development (MLSD);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3