Plant Diversity and Soil Nutrients in a Tropical Coastal Secondary Forest: Association Ordination and Sampling Year Differences

Author:

Yaseen Muhammad,Fan Gaopan,Zhou Xingcui,Long Wenxing,Feng Guang

Abstract

Studying the patterns of changes in species diversity and soil properties can improve our knowledge of community succession. However, there is still a gap in understanding how soil conditions are related to plant diversity in tropical coastal secondary forests. We sampled plant diversity and soil nutrients spanning two different years (2012 and 2019) to assess the patterns of species diversity and relationships of soil nutrients and species diversity on Hainan Island, southern China. Results showed that the soil pH and total nitrogen (TN) significantly decreased while the soil organic matter (OM) and total phosphorus (TP) significantly increased from 2012 to 2019. Plant species diversity was significantly higher in 2012 than in 2019, and the dominant species significantly changed in two different years. Using multiple regression analysis, we determined that soil TP and TN were significantly related to plant diversity in 2012 and 2019, respectively. Using CCA analysis, TN and OM were the strongest predictors for dominant species in 2012, whereas the soil TP and TN were the strongest predictors for dominant species in 2019. Our findings show a significant change in plant diversity and dominant species after 7 years of development in the tropical coastal secondary forest. The patterns of plant diversity and soil nutrients increase our knowledge of forest restoration in coastal areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3