Optimization of a soil type prediction method based on the deep learning model and vegetation characteristics

Author:

Suwardi ,Sutiarso LilikORCID,Wirianata HerryORCID,Nugroho Andri PrimaORCID,Sukarman ,Primananda SeptaORCID,Dasrial Moch.ORCID,Hariadi BadiORCID

Abstract

The structure and composition of forest vegetation plays an important role in different ecosystem functions and services. This study aimed to identifying soil types based on vegetation characteristics using a deep learning model in the High Conservation Value (HCV) area of Central Kalimantan, spanning 632.04 hectares. The data on vegetation were collected using a combination method between line transect and quadratic plots were placed. The development of a deep learning model was based on the results of a vegetation survey and the processing of aerial photos using the Feature Classifier method. The results of applying a deep learning model could provide a relatively accurate and consistent prediction in identifying soil types (Entisols 62%, Spodosols 90%, Ultisols 90% accuracy). The composition of vegetation community in Ultisols was dominated of seedling and tree (closed canopy), meanwhile in Entisols and Spodosols was dominated of seedling and sapling (dominantly open canopy). Ultisols exhibited the highest species richness (57 species), followed by Spodosols (31 species) and Entisols (14 species). Ultisols, Entisols, and Spodosols displayed even species distribution(J' close to 1) without dominance of certain species(D < 0.5). The species diversity index was at a low to moderate level(H' < 3), while the species richness index remained at a very low level(D_mg > 3.5).

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3