Not Only Severe Events: Moderate Dry Periods Impact the Hydraulic Functioning and Survival of Planted Ponderosa Pine Seedlings

Author:

Koehn Carolyn R.ORCID,Petrie Matthew D.ORCID,Hubbard Robert M.

Abstract

Juvenile tree survival will increasingly shape the persistence of ponderosa pine forests in the western United States. In contrast to severe pulse disturbances that induce widespread adult and juvenile tree mortality, moderate periods of low rainfall and warm temperatures may reduce forest persistence by killing juvenile trees at the seedling stage. Intensification of these periods in a changing climate could therefore increasingly restrict both natural regeneration and artificial regeneration of planted seedlings. We conducted a controlled field experiment at a single site in the Front Range of Colorado, USA, to determine the responses and survival of 3 Colorado subpopulations of <1 year old potted ponderosa pines to moderately dry conditions, variation in small rainfall events based on observed patterns, and shaded and unshaded microsite environments. Near surface soil moisture increased slightly following small rainfall events, but declined over the 45-day experimental period. Seedling transpiration and associated canopy cooling declined after ∼13 days, and further declines in transpiration and canopy cooling suggest that the majority of trees in lower rainfall treatments experienced hydraulic dysfunction between days ∼20–30. After 45 days, mortality across all subpopulations and treatments, inferred by relative water loss, exceeded 90–95%. Despite some uncertainty pertaining to the stress tolerance of nursery grown versus naturally germinated conifers, our results show that planted ponderosa pine seedlings <1 year old are unlikely to survive moderate dry periods of 20+ days relying on small rainfall events. Although microsite conditions and soil moisture availability shaped tree hydraulic functioning early in the experiment (days 1–13), later functioning was shaped predominately by the legacy of rainfall treatments. Our results illustrate the importance of moderate dry events that occur consistently as part of seasonal variation in climate, and show how their intensification may constitute a sustained press that limits opportunities for natural and artificial regeneration.

Funder

USDA Forest Service, Western Wildlands Environmental Threat Assessment Center

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3