Ability of seedlings to survive heat and drought portends future demographic challenges for five southwestern US conifers

Author:

Crockett Joseph L1ORCID,Hurteau Matthew D1ORCID

Affiliation:

1. Department of Biology, MSC03-20201, University of New Mexico , Albuquerque, NM 87131-0001

Abstract

Abstract Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. and Picea engelmannii Parry ex Engelm.) changed in response to low moisture availability, high temperatures and high vapor pressure deficit in incubators. We used a Bayesian framework to construct discrete-time proportional hazard models that explained 55–75% of the species-specific survival variability. We applied these to the recent climate (1980–2019) of the southwestern USA as well as 1980–2099 CMIP5 climate projections with the RCP8.5 emissions pathway. We found that the more mesic species (i.e., P. menziesii, A. concolor and P. engelmannii) were more susceptible to the effects of hot and dry periods. However, their existing ranges are not projected to experience the conditions we tested as early in the 21st century as the more xeric P. edulis and P. ponderosa, leading to lower percentages of their existing ranges predicted to experience seedling-killing conditions. By late-century, extensive areas of each species southwestern range could experience climate conditions that increase the likelihood of seedling mortality. These results demonstrate that empirically derived physiological limitations can be used to inform where species composition or vegetation type change are likely to occur in the southwestern USA.

Funder

United States Department of Agriculture National Institute of Food and Agriculture and Food Research Initiative program

United States Department of Agriculture National Institute of Food and Agriculture Interagency Carbon Cycle Science program

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3