Portable through Bottle SORS for the Authentication of Extra Virgin Olive Oil

Author:

Varnasseri Mehrvash,Muhamadali Howbeer,Xu Yun,Richardson Paul I. C.,Byrd Nick,Ellis David I.ORCID,Matousek Pavel,Goodacre RoystonORCID

Abstract

The authenticity of olive oil has been a significant long-term challenge. Extra virgin olive oil (EVOO) is the most desirable of these products and commands a high price, thus unscrupulous individuals often alter its quality by adulteration with a lower grade oil. Most analytical methods employed for the detection of food adulteration require sample collection and transportation to a central laboratory for analysis. We explore the use of portable conventional Raman and spatially-offset Raman spectroscopy (SORS) technologies as non-destructive approaches to assess the adulteration status of EVOO quantitatively and for SORS directly through the original container, which means that after analysis the bottle is intact and the oil would still be fit for use. Three sample sets were generated, each with a different adulterant and varying levels of chemical similarity to EVOO. These included EVOO mixed with sunflower oil, pomace olive oil, or refined olive oil. Authentic EVOO samples were stretched/diluted from 0% to 100% with these adulterants and measured using two handheld Raman spectrometers (excitation at 785 or 1064 nm) and handheld SORS (830 nm). The PCA scores plots displayed clear trends which could be related to the level of adulteration for all three mixtures. Conventional Raman (at 785 or 1064 nm) and SORS (at 830 nm with a single spatial offset) conducted in sample vial mode resulted in prediction errors for the test set data ranging from 1.9–4.2% for sunflower oil, 6.5–10.7% for pomace olive oil and 8.0–12.8% for refined olive oil; with the limit of detection (LOD) typically being 3–12% of the adulterant. Container analysis using SORS produced very similar results: 1.4% for sunflower, 4.9% for pomace, and 10.1% for refined olive oil, with similar LODs ranging from 2–14%. It can be concluded that Raman spectroscopy, including through-container analysis using SORS, has significant potential as a rapid and accurate analytical method for the non-destructive detection of adulteration of extra virgin olive oil.

Funder

Science and Technology Facilities Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3