System Dynamics Modeling for Estimating the Locations of Road Icing Using GIS

Author:

Hong Seok-Bum,Lee Byung-Woong,Kim Chang-Hoon,Yun Hong-SikORCID

Abstract

Road icing can cause large traffic accidents on highways because, unlike snowy roads, its location is difficult to identify and it can occur rapidly, even during rainy weather. In this study, the amount and location of road icing were modeled and simulated over time based on the system dynamics theory. The simulation is expressed on the geographic information system (GIS) and facilitates advance detection of the location and amount of road icing that occurs unexpectedly unlike previous studies. Modeling was designed to process spatial and meteorological data after combining them. The spatial data used for modeling were Hillshade, Water System, Bridge, and Road (Highway). Air temperature, cloudiness, vapor pressure, wind speed, and precipitation were used as meteorological data. The amount of road icing was estimated by scientifically designing the parameters related to its occurrence between spatial and meteorological data. Based on this, the amount of road icing by location was simulated per 1m2 using the GIS. The simulation results showed that the amount of road icing that began to increase from AM 08:00 reached its peak (an average of 213.62 g/m2) at noon and then slowly decreased. Additionally, when simulated with GIS, the sum amount of road icing between AM 12:00 and PM 13:00 was a maximum of 1707.292 (g/14 h) and a minimum of 360.082 (g/14 h) for each location. Hypothesis testing was conducted on whether road icing significantly occurs at actual points vulnerable to traffic accidents. Based on the results, the average significance level was calculated to be less than 0.05. Therefore, the alternative hypothesis that the model can estimate road icing in vulnerable areas was adopted. The verified simulation can be useful data to government agencies (e.g., road traffic authority) in their programs to prevent traffic accidents caused by road icing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Black Ice;Cary,2010

2. Traffic Accident Article (Case1)http://news.tvchosun.com/site/data/html_dir/2020/01/06/2020010690068.html

3. Traffic Accident Article (Case2)http://www.joynews24.com/view/1231389

4. Traffic Accident Article (Case3)https://www.segye.com/newsView/20191129511652?OutUrl=naver

5. Traffic Accident Analysis Systemhttp://taas.koroad.or.kr/web/shp/adi/initBasisPurps.do?menuId=WEB_KMP_IID_IID_PAB

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3